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ABSTRACT 

A coding scheme for  additive Gaussian channel is de- 

veloped using a noisy feedback link and D-dimensional elementary 

signals with no band width constraint. 

transmission at  a ra te  R <  Rc where Rc is slightly less  than the 

channel capacity C. 

nel, the coding scheme reduces to a D-dimensional generalization of 

the coding scheme of Schalkwijk and Kailath. 

pression for the probability of e r r o r  is determined when T, the 

time of Transmission rate is finite. 

with the best codes which u s e  only the forward channel. 

This allows e r r o r  free 

When there is no noise in the Feedback chan- 

In addition, the ex- 

Our scheme is also compared 

* This work was supported in  par t  by NASA under Contract 
NGR-22-007-068, the Joint Services Electronic Program under 
Contract ~01~-1866(169 and by the Division of Engineering and 
Applied Physics, Harvard University. 
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SEQUENTIAL CODING SCHEMES FOR AN ADDITIVE 

NOISE CHANNEL WITH A NOISY FEEDBACK LINK 

I. INTRODUCTION 

We a r e  interested in  the transmission of messages over a noisy 

channel using a noisy feedback channel which will be used to convey 

the state of the uncertainty e f the  receiver to the transmitter. 

is suitable for many of the communication problems. 

on the transmitted signals is their limited average power. 

point of our paper is the classical result due to Shannon [l] who showed 

the existence of a coding scheme in which the probability of e r r o r c a n  be 

made arbitrari ly small  for a nonzero transmission rate. 

suppose that one has to transmit 3113 of M messages during a period of 

T seconds across  a Gaussizn channel with double sided spectral density 

- with Pav being the average power constraint on the transmitted sig- 2 

This model 

The only constraint 

The starting 

Specifically, 

NO 

AV 1: nals. Let R A transmission rate = ( ( h M ) / T )  nats/sec and P (M, T, - 
P 

e, opt NO 
- - 

Probability of e r r o r  using the optimal coding scheme with a signal-to-noise 

ratio pAV/No ' 
Then 

R < C  

R > C  
i f  

where C = channel capacity = P /N AV o . A number of authors [2-61 have 

investigated the transmission of messages over noisy channels using a noise- 

less  feedback link. Shannon [2] showed that the existence of a noiseless 
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feedback link will not result in an increase in the channel capacity in the 

forward direction. The recent striking contribution is due to Schalkwijk 

and Kailath [6] who developed a coding scheme using noiseless feedback 

link and one dimensional elementary signals which realizes a transmission 

rate equal to the channel capacity and demonstrated its superiority over 

best known conventional codes like the simplex codes [7]. However, i f  

there i s  noise in  the feedback link, their coding scheme implies zero t rans-  

mission rate i f  we insist on zero 

- 
probability of e r ro r .  

The coding scheme of this paper i s  obtained by considering the prob- 

lem 

both at  the transmitter and the receiver. 

using D-dimensional elemen.h?jr signals can be transmitted over a noisy 

channel using a noisy feedback chkam~el with zero probability of e r r o r  a t  any 

rate less  than the critical ra t s  R 

capacity C of the forward c b a ~ r e l  

of information transmission on one of recursive estimation problem 

The main result is that messages 

which i s  only slightly less  than channel 
c 

in the two-sided spex:tral density of the additive Gaussian noise Nb where - 2 

in the feedback link, 

defined earlier. 

sent, the coding scheme becones a generalization of the coding scheme in 

reference [6] f o r  D-dimensional signals. In addition, i f  the time of t rans-  

mission T i s  finite, expression will be derived for the probability of 

and other symbols have been 

In particular, when the noise in  the feedback link is ab- 
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e r r o r  and this scheme will  be compared with the best codes (simplex 

codes) which use only the forward channel. 

11. CODING SCHEME 

We wil l  f irst  convert the continuous time Gaussian channel into 

a discrete time Gaussian channel and describe the coding scheme in  terms 

of the latter. 

1. Transformation of a continuous time Gaussian channel into 

a discrete time channel. 

Suppose one has to transmit one of the M messages belonging to the set 

over a time T seconds. Let us assume a set of orthogonal elementary 

. . . e .  $ ( t )  are  available which satisfy the relation signals fi (t) ,  D 
P 

k, I =  1, ..., N 

where A i s  the discretization interval. The actual signal transmitted is 

s ( t )  
s ( t )  = x N  uT(i) $ (t- iA) 

i=l 

where 

T u (i) = (y(i) , . . . . . . .., %(i) ) 

N = Largest integer less than or  equal to (T/A). The vectors 

u(i), i = 1 , . , . , N a r e  yet unknown and depend on the particular 

message to be transmitted. 
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Let the received signal be r l ( t )  and the additive white Gaussian 

NO noise with spectral density 2 . 
r p )  = s ( t )  4- n,P) 

The reheiver computes a sigral  s2( t )  on the basis of i t s  measurements 

and sends i t  back to the transmitter.  Let the noise in  the feedback 

channel be %(t) which is white Gaussian and additive with spectral  den- 

sity 7 .  % 

s (t) = vT(i) Rt- i  A) 
i=l 2 

then the continuous time model represented by Figure 1 and equations 

(2), (3) ,  (5), ( 6 )  can be replaced by the discrete time model repre-  

sented in  Figure 2 and equations (7)-(9),  with discretization interval A [7] 
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y(i) = u(i) t q( i )  

z(i)  = v(i) t E ( i )  

q(i), 5 (i), i=l , . . , N a r e  white Qussian random -tors with 

(E(q(i))  = E ( 6  (i)) = 0 

Let 

The problem is to  determine the vectors u(i), i=l , . . . , N 

that a r e  to  be sent at the transmitter and the vectors v(i), i=l , . . . , N 

that are to be sent a t  the receiver so that e r r o r  free transmission is 

possible a t  a nonzero transmission rate. 

u(i), v(i), i=l, 2 , .  . . . , N, will depend on the particular message that 

has to be sent to the receiver. 

Of course, the vectors 

2 .  Description of coding scheme CS-1 

Let us assume that the number M = MID where MI is a n  integer. Let 

us  represent the messages of set  {m'jl} by M equispaced points in a 

D-dimensional typercube centered about the origin. 

t ra tes  this for the case M = 32 and D = 2 .  

Figure 3 illus- 

Lh We will  associate the J message m ( j )  with the D-dimensional 

vector x ( j  joining the origin to the jth point on the lattice. 

coding scheme CS-1 can be described briefly as follows: 

The 

(A) Let x = x(j) if the message m( j )  is to  be transmitted to  the receiver. 

set i = 1. 
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(B) At the ith step, the traaemlkter sends the vector u(i) A a(x-z ( i ) )  
I 

where a is a scalar constant and E (i) will  be described later.  

(C) The receiver hae a measurement y(i)  (D-vector) 

y(i) = a(x-'jZ (i)) + Q  (is 

Using this measurement, the receiver recursively computes the 

vector 2 (itl) to be described later. It sends back to the t rans-  

mitter the vector Q % (i-;-l). 

(D) The transmitter receives a measarement z(ii-1) (D-vector) 

z(it1) = a 2 (itl) + (!+I) 

Using this measurement, the transmitter recursively computes 
- 
x (itl) and hence a(x-Z (:+I)) 

(E) Increment i by one arid go back to step (B) 

2 (itl) = 1daxj.mmnn likelihood estimates of the vector 
azzmeter x at the receiver on the ir 

ztage babGd ~n all the available measurements 
till that stage i. e. ?y( l ) ,y(2) ,  . . . , y ( i ) .  

X (itl) = Maximu.m 1-ikelihood estimate (Kalman estima- 
tsr)  of the random vector ^x (itl) by the t rans-  
rnitte~ based on all the measurements z(l), * .  . , z(it1) 
and the pa7iua.meter x. 

= E [ 2 {*;I\J / z (a) ,  . . . .., z(it-1); x 3 
*. The recursive equations f o ~  x (i) and x (i) are given below and a block 

diagram of the coding scheme is  i n  Figure 4. It should be noted that 



FIG. 3 REPRESENTATION OF THE M = 3* 
MESSAGES ON A 2-CUBE. 
CROSSES DENOTE MESSAGES. 
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- E (itl) = x (i) t f ( i )  a ( x 6  (i)) t 8 (itl) {z(it l)-aE (i) - ac(i)(x-Z (i))j (13) 
2 8(i) = p(i) a / u e (15) 

It should be noted that (12) is stored at  the receiver, (13) a t  the t rans-  

mitter and the deterministic difference equations (16)-(18) and the 

definitions (14)-(15) a r e  stored both a t  transmitter and the receiver. 

111. ANALYSIS O F  THE CODING SCHEME 

Before we demonstrate the possibility of e r r o r  free transmission, 

we will  analyse the ML (Maximum Likelihood) estimators at  the 

transmitter and the receiver, more closely. 

here  that the ML estimator at the receiver and the ML (Kalman) estima- 

tor  at  the transmitter a r e  intimately related to each other, even though 

they a r e  treated separately here. 

It .should be emphasized 

1. ML estimator of x at the receiver. 

Define x " ( i ) ~ ~ ( i ) - x  - - (i) 

= e r r o r  in  the optimal estimator 

a t  the transmitter.  

Then the equation for y(i) can be rewritten a s  : 

y(i) = a(x-G (i)) +{a x" (i) t q  (i)} 
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Let ^x (i)  = ML estimate of the parameter x at the receiver based 

on the measurements y(l), . . . , y (i-1) 

Let us t r y  to compute 2 (itl) from 2 (i) and y(i) 

But the noise a z(i) occuring in (19) is not - white, though Gaussian. 

Therefore, while computing the MLE 2 (itl), the correlation between 

(x-2 (i)) and ?(i) has to be considered. 

a By definition, x (i+l) is obtained by minimizing J w. r .  t u 

2 J = 11 (u-2 (i)), (G ' ( i )  t q(i))  1 1  
ar(i) I 

2 
= 1 1  (u-2 (i)), (y(i)-aiz&i (i)) 1 1  

7 -1 
q(i)  1 ar(i) I 

n l i )  I (a p(i) t u ) I L 2  r7 2 1  
By the straightforward minimization, we obtain 

2 (itl) = 2 (i) t {(I) y( i )  

where the scalar r ( i )  has been defiaed ear l ier  in (14). 

e r r o r  in the estimator = {X-G (i)) . 
From (21) we can write the recursive relation for (x-2 (i)) 

At the ith stage, 

x - 2(i+I) = (1- a ~ ( i )  1 (x-2 (i)} 
- S ( i )  (ax" (i) +r l ( i ) )  
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From (22)  and ( 2 0 )  we can obtain the recursive equation (16) for the 

scalar qli). 

In the appendix i t  is shown that asymptotically 

< 1 and sufficiently small Nb ’ 7k  Nb - s(i)=L + { l t2 \ -  t 2 -} ’ No a i  No NO 

2. Optimal Estimator of ^x (itl) at  the Transmitter 

Rewriting (21) 

2 (itl) = 2 (i) t a c( i )  (x- 2 (i)) t c( i )  ~ ( i )  (23) 

Equation for the measurement z ( i t l )  is 

z(it1) = a2  (itl) t t(it1) (24) 

We want to evaluate the ML estimator of the random vector % (itl) given 

the measurements z(1) , . . . . , z(it1). Rewriting (23) 

2 (itl) = E (i) t ac(i) (x-z (i)) t Z(i) t t(i)q(i) (25) 

Hence, by definition, given 2 (i) and z( i t l ) ,  2 (itl) is obtained by 

minimizing J w. r. t vector u 

J 

Perform ng the minimization, we get 

and the recursive equation f o r  p(i) is given ear l ier .  

It should be noted that 

E(it1) = E(S (itl) /z(l) , . . . , z(it1) ; x) 
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since the ML estimator is identical vith the Kalman-Bucy estimator. 

Let - 
x (i) = B (i)-x(i) = e r r o r  in the optimal estimate. 

Subtracting (25) from (27) we get the difference equation for the e r r o r  

F(i) 

we can derive the recursive relation for p(i) from (28) and the various 

definitions. 

get the relation (17). Similarly using (28) and (22), we can get the recur-  

sive relation (18) for r(i) 

AlternativePy, we can invoke the Kalman-Bucy theory to 

Asymptotically 

These relations have been proved i:rL the appendix 1. 

r 
From these we obtain (in appendix) 

t 1 Nb 
E[(X-Y (i)) - -}I 

No 

3. Determination of the Criticle Transmission Rate R 

THEOREM : 

Let PAv be the constraint on the average transmitted power. 

Let ( N  / 2 )  and (Nb/2 ) be respectively the two-sided spectral densities 
0 

of the additive white Gaussian noises in the forward and backward channel 

respectively. Suppose one of M A - exp(RT) messages has to be trans- - 
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mitted over a time T seconds (where R is known as the transmission 

rate). 

the maximum likelihood decision rule i s  used to obtain the decision. 

Suppose the coding scheme mentioned in Section I1 is used and 

Let Pe(M, T) be the probability of e r ro r .  

Rc suchthat 

Then there exists a constant 

0 R <  Rc 
i f  

> Rc I 1 
Lim Pe (M = exp (RT), T) = 
Tdoo 

u, 
An approximate expression for  R is 

C 

Proof: Suppose that during the time T , N measurements y(1) , . . . , y(N) 

have been taken at  the receiver, the latest measurement being y(N). 

Since all the M messages a re  equally probable, the decision rule d(' ) 

at  the receiver is: 

V i=1, .  . . , D  and V k = l ,  .. . , M .  

1. e. ,  
d(2 ( N t l ) )  = m(j) i f  - 1/2M1 < (xj-2 ( N t l ) ) i  < 1/2M1 

V i = l ,  ..., D 

where M1 = M1jD (an integer) 

Recall thatcov .(x-? ( N t l ) ) = +  N (ltkq) , where k = & - 
Let the probability of e r r o r  4 Pe (M, T) 

= 1  K 
a Q NO 

- 
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P = 1-P, (M, T) 
C 

^x ( N t l )  t (1/2M1) 

2 ( N t l )  - (1/2M1) 

3" 

Hence 
E >  0 

Lim P,(:M,T)- i f  
T-.O i: < o  

Therefore, the optimal signalling rate R is obtained by setting 
C 

M(T)  = N D/2 

= the average transmitted power pAV 

Let US assume that x. is uniformly distributed in the interval (-1/2,1/2) 

for every j = 1 , .  . . . . , D . Since R (1)=0, E(X .) = 1/12 for a l l  j=1 , . . . , D . 
J 

2 
J 
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we know from (29) that 

where A i s  the-er ror  due to the use of approximation formula. 
1 

A2 = Euler-Maschorini constant B u t r  i=l i = I n  N t + 9 

Substituting for T from (30) we get 

Hence 

2Rc 2 a 2 2  
{ Q  In N t 12 t u (A1 t A2) } - 

pAV - 

2 Lim P = 2Rc (r AV N+OO 
2 From the definition of (r , we obtain 

1 ) ( -  pAV, 
1 Nb NO -f Nb t 2 -  

Rc = (  
1t  - 

NO NO 

IV. PROPERTIES O F  THE CODING SCHEME CS-1 

1. Probability of e r r o r  P for finite T with an  optimal choice for the e 
gain a . 

Let 
c = PAV 

and R- 
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For given a and large T the probability of e r r o r  is given by 

7 

RT Let M = e 

From (31) we obtain 

1 C = - [ - t z2 (in N t A1 t A2)] 
2 D a  

T 12N 
0 

Rewriting the above equation by neglecting A1 and A2, we have 
3 
L 

CT a 
D EN0 N=exp [2C2 ( - - - )] 

Substituting f o r  N from (33) in  (32) and minimizing the overall 

expression for P with respect to a we get the optimal value of a a s  e 

We can substitute the value of a in (32) and simplify it by noting 
opt 

L that in the expression for N given by (33), (a /12N0) can be neglected 

w. r. t (CT/D) 

v h  a opt fi Let 
opt = 

(33) 
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where 
1 

‘3 A CZ(ltkq) 

Then Pe (M=exp(RT), T) 

2RTl 1 3 R C  
D exp [ -7-c3 exp { (  -1) - - 

RC RT 3 f  c3 
exp { (  - -1) - }  2 R D 

(35) is the basic expression for the prabability of e r r o r  for 

finite T. Note that for given T , N can be determined from (33)  and 

hence (T/N), the time per iteration is also determined. 

2. Noiseless Feedback Channel 

Here S(i)  = 0 and hence 

cov [t(i)] 4 we 2 I = 0 - 
~v [F(~)J 4 p(i11 = o 

E [{  x - t  (i)} {;(i)lT J 

- 

r(i) I = o - 
In this case, the recursive formula (13) becomes 

F (itl) = z(it1) Since O(it1) = I/& V i < a ,  

= (itl) 
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Correspondingly, the weighting factor f ( i )  in (12) becomes 

c( i )  = l/ai 

In other words, (12) becomes 

1 
ai  P (itl) = P (i) t - y(i) 

This coding scheme wil l  be referred to as C S - 2  

This simplified coding scheme is given in figure (5). Note that i n  

this scheme Rc = C and that the expression (34) for probability of 

e r r o r  (when time T is finite) can be simplified by noting that % = 1. 

This coding scheme is nothing but an  extension of the coding 

scheme in [ 6 ]  to D-dimensional signals. 

V. ALTERNATE CODING SCHEME FOR NOISY CHANNEL 

This coding scheme is very similar to the one considered all 

along except that the recursive formulae for 2 (i) and F (i) a r e  simpler. 

This coding scheme wil l  be referred to as CS-3 . 
1 2 (itl) = Z (i) t - y(i)  ai 

where 

p(it1) = 
u 2 t a 2. p(i) t 2 .-2 

1 
E 

(39)  

In this case the cri t ical  ra te  R 

The e r r o r  covariance Cov [x-e (i)] which determines the e r r o r  prob- 

ability is given by the relation 

is given by the same formula as before. 
C 



I -  
, -  

-I w z x 
Q 
I 
0 

- t  P 
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I .  

The other relevant covariance matrices a r e  given below: 

2 
(r fi l N b  

E[(x-$ (i)) (x"(i))T]=- [ '  + z r l I  
a 1  NO 0 

2 
U 

c ~ v  [x-2 (i)] = + [ 
a 1  

The derivations of these formulae can be found in Appendix 2. 

As before, an  expression can be found for the probability of e r r o r  

when time T is finite and we can choose the gain a to minimize this 

probability of e r ro r .  

gain, aopt, is given below 

The expression for the cptimal value of the 

= 6  N0/C2 2 
opt 

a 

The probability of e r r o r  is givenby the formula: - 
RT $ (M=e , T) 

3 KC Dexp [ - T C 3 e x p  { ( - -1) xT] - R D - 

where 

c3 = 

(44) 

(45) 

The details a r e  omitted since they a r e  very similar to the ones used 

ear l ier .  



-18 - 
The most intriguing feature of this coding scheme is that the 

probability of e r r o r  is less  thar  that for CS-1 for Same T and other 

parameters.  This i s  due to the fact that Cov x-?(i)  for CS-3 is 

slightly smaller than the correspcnding quantity in CS-1. 
[ I  

Even though 

this is intriguing, it can be easily explained by noting that the maxi- 

mum likelihood estimate 2 (I) in CS-1 is computed from a set  of 

dependent measurements y(1) ? .  . . y(i-1) and in this case the MLE 

estimate is  not a minimum v a r k x e  estimate. It is interesting to note 

that the estimate 2 (i) of x in  CS-3 i s  obtained by minimizing J with 

respect to u. 

Hence the estimate ^x ( i j  i-2 C S - 3  can be looked upon as the minimum 

variance estimate and hence its variance must be less  than that of 2 (i) 

in  CS-1 which is a MLE. 

VI. COMPARISON 

The best codes which use iinly the forward channel a r e  the 

simplex codes which behzve like the orthogonal codes for large M. 

these codes, the probability of e r r n r  is bounded by (46) [7]. 

For 

if 0 C R/C d 1/4 

i f  1/4 d R/C C 1 

and RT - A Ln M = amount of informationto be conveyed over a period of T seconds. - 
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In the coding scheme CS-1 

where 

c, = 
J 

In the coding scheme CS-3 

RT 
R D 10 loglo-% =log 

where 

c3 = No 

fl t -  Nb 1 t 2  - 
NO No 

and 

Rc = 

ltz- 1 Nb dc 
NO NO 

Inspection of expressions 

superiority of the coding schemes CS-1 and C S - 3  over the orthogonal 

codes. In Figure 6 ,  f o r  a fixed R/C and D, the probability of e r r o r  is 

plotted on a logarithmic scale versus ( R T )  i n  nats for various values 

of ( N  /N ), the ratio of feedback noise power to forward noise power. 

(46)-(50) establishes unambiguously the 

b o  

(49) 
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Another way of comparison is to compare the t ime delay T 

required to acheive the same probability of e r r o r  for the different 

I Nb 
No 

0.1 
0.02 

0.0 

coding schemes. 

_I- L 

- RC ScbeLme CS-1 Scheme (23-3 
T secs  C R T  T secs  R T  

0.732 5.825 9.7 5.65 9.42 

0.87 2. a 4.5 2.64 4.4 

1. 0 1.68 2.79 1.68 2.79 

Let 
P = I X I O - ~  , R/C = 0.6 , C = 1 nat / sec , D=l 
e 

Let No = 10 joules. 

nats from the formulae given. ear l ier  and hence compute the time delay 

T for the same probability of e r r o r  for the different coding schemes. 

We car, obtstn the corresponding value of RT in 

Simplex codes: RT = 1.83. 5 nats 9 T = 306 seconds 

Coding Schemes CS-1 and CS-3 

We w i l l  also make 2 f e w  remarks on the advantages and disad- 

vantages of havivg a large D, the dimensions of the elementary signals 

in  the feedback codir_g scheme. i t  is evident f rom (47) tha t  for same 

RT, larger  D implies smaller P In order to offset this fact, consider the 

number of iterations N which GCCUP in time T. 

e 

2Rc RT 
R N = exp { - - 1  D 

For  fixed RT, Larger D implies smaller N. In other words, the ratio of 

T/N, the time per  iteration o r  the "pulse width" will increase with D. 

This clearly is an  advantage since this reduces the ffcost" of the system in 

some sense. 



. 
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FIG. 6 :  PROBABILITY OF ERROR Pe AS A FUNCTION 
OF THE AMOUNT OF INFORMATION ( R T )  IN 
NATS FOR VARIOUS VALUES OF ( Nb/N,) 
USING THE CODING SCHEMES CS-1 AND 
cs-3 .  



VII. CONCLUSIONS 

Feedback coding schemes using a noisy feedback channel and 

D-dimensional elementary signals have been developed in which to 

achieve a zero e r r o r  transmission rate Rc nearly equal to the 

channel capacity C. We  have also analyzed their performance when 

the transmission time T is finite and showed their superiority over 

traditional methods. 

The only drawbacks of the coding schemes a r e  the requirements 

of infinite bandwidth for the signal and infinite power at  the receiver 

i f  time T i s  infinite. But for finite time T both these objections 

a r e  not applicable. Moreover, in  many space communication problems 

there i s  no limit on the available power or  the receiver. Hence, the 

only important drawback is the requirement of infinite bandwidth for 

the signal. 

und e r c ons ide rat  i on. 

Methods of overcoming these disadvantages a r e  presently 

- 21- 
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APPENDIX I 

The asymptotic expression for the solution of the difference 

equations (16)-(18) will  be given here. 

It is not too hard to  show that the homogeneous difference 

equations (16)-(18) have zero as the equilibrium state. Hence, p(i), 
q(i) and r(i) will be expanded in power ser ies  in te rms  of 7 1 

2 -P Qrl (ltkq) t o(-$ 1 

p(i) = 3 1 1 P  k f O ( i )  

r(i) = 3 f kr 

2 i 
2 a 

1 

a i a 

2 
1 

O(+ 

F r o m  (A-l) ,  one can easily show that 

ac(i)  = ( l tk  .t kr) i 1 + 0 (T) 1 I 9 

Moreover, we will use the following expansion throughout 

the Appendix. 

a. 
1 By definition, a A 0 (bi) i f  Lim - = 0 

i =  i-.b bi 

(A-1) 

- 2 3 -  
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we get From (16) , using (A-1) and (A-2) 

1 1  1 1 
(ltkq) (T - T )  = [ F ( l t k  ) tT {(1tkqtkr)2- 2(1tk q r  t k  )(l tkq) 

-2(ltk t k  ) ( l t k  ) -2kr(l+kq+kr)} t O($] 

i g i  
1 

9 r  q i 

1 
i 

Equating the coefficients of 7 on either side of the above equation, we get 

(A-3) 
2 

q r  q (k t k  ) t (k t2kr) = 0 

Let us consider equation (17) .  

Equating the coefficients of 7 on both sides of the above equation, we get 
i 
2 

(A-4) k - (l+k t k  Kbo =O 2 
k p - K b o  p q r  

Let us simplify (18) 

k k  2 1 1 B 1 Ar t (l tkqtkr)  kp t ( l t k  tk,) 1 
Q 

k (a - 3) = [ -k - - {(l+k tk,) k, t 
r 1  i 1 P 1 .2 q Kbo 

1 

i 
Equating the coefficients of (3 on both sides of the above equation, we get 

k k  
[l+k Spr t 2(kqtkr) +(k. t k  ) (k t 2krtk P ) = 01 Kbo 9 r  q (A- 5 )  
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We have to solve (A-3)-(A-5) simultaneously for k 

simplest way is to assume power ser ies  solutions for all of them in 

k and kr. The 
P’ 9 

t e rms  o ~ \ / K ~ ~  . 

Let 

Let 

k = gldtg2d 2 t O(d 2 ) 

2 2 kr = g3dtgld t O(d ) 

2 2 k = g5dtgbd t O(d ) 

Parameters  g through g6 have to  be determined. Substitute (A-6) in 1 

(A-3) and equate the coefficients of the two most significant powers of d 

on \either side of equation 

Repeating the same process with (A-4) and(A-6) we get 

2 g1 - 1 = o  I 

Repeating the same process with (A-5) and (A-6), we get 

gig3 = -1 i g2g3fglgq+g1+2(g3+85) = 0 

(A-8) 

(A-9) 
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Solving the equations (A-7) - (A-9) for gl , . . . , g6 we get 

g1 = 1 g3 = -1 g5 = 2 

g2 = 3/2 g4 = - 3/2 g6 = 

2 
n- 

= (1t2 -K t 2Kbo) I 2, 
a 1  

2 ~ 

U 
(F(i)}T] z+ kr I 

a i  

2 

2 
a- 

- - g i ~ k  t k  t2kr)I 
a 1  2. q P  



APPENDIX 2 

We will establish the covariance 

scheme CS-3 by following the methods 

formula (40-43) for coding 

similar to those in  Appendix 1. 

We will use &e eltpansions (A-1) in Appendix 1. 

We know that 

S ( i )  = l/ai 

We can easily show that 

From (16) , using (A-1) 

1 
O ( - $  

, we get 

Equating the coefficients of- 1 on either side we get . 2  
1 

k t2kr = 0 
9 

Let us simplify (17) using (A-1) 
K {-kk tT} 1 

K b o t  - 1 k t 2  1 
1 b o i p  1 1 k ( - -  7 )  = i- (7) 
1 1 P 1  

1 P i  

1 K - --k 1 tT{ 1 1- L }  t O ( 7 )  

i P i  Kbo 1 

1 Equating the coefficients of -J on either side, we get 
1 

k - Kbo} = 0 
2 

{kp Kbo p 

Let us simplify (18) using (A-1) 

(A-10) 

(A-11) 

k k  1 1  1 1 
i r  2 kr(  7-7) = [ - k  - -  { kr t a r  t kp t 1) t 0 (5) 3 

i i Kbo 1 
- 2 7 -  
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1 Equating the coefficients of ( 7 )  on both sides of the above equation, 

we get 
1 

k k  
{ l t k  t a r }  = O  

p Kbo 

Comparing (A-11) and (A-12), we get 

k r = - k  P 

t 

(A-12) 

(A-13) 

Solving for k from (A-11) and retaining terrnsVKbo and Kbo , we get P 

These relations in  conjunction with (A-1) give the expressions (40)-(42). 

In order to prove (43) note that 

2 
0- 

= 9 { l t k  t k  t2kr} I 
9 P  a 1  

, 
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